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Context

Maize prices highly impacted by supplies:[2, 5, 6, 8, 14]
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Remote sensing & crop monitoring
How?

Satellite products and crop monitoring:

• Vegetation indices (NDVI, SAVI...)[11, 13]
• Biophysical parameters (LAI,fAPAR,FVC...)[7, 12, 10]

Why?

Advantages:

• Large area coverage

• low-cost

• repetitive coverage (up to 1 day)

• near real-time information
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Remote sensing & crop monitoring
Examples of satellite products

(a) LAI July 2012,severe drougth, annual yield of
7,73 t/ha (FAOSTAT)

(b) LAI July 2016, annual yield of 11,2 t/ha
(FAOSTAT)

Figure 1: LAI july values & annual yield
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Goals & Motivations

Goals:

• Predict the impact of maize production variation on prices based on satellite
images available during the season

Motivations

• Near-real time price predictions

• Avoiding the use of regional agricultural production, demand, progress & condition
reports

• Mitigate food crisis through production shock forecasting
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Data

Data & remote sensing products:

• LAI from 1981 to 2018 (GLASS).
– Spatial resolution: 0.05◦≈ 5.5km (at the equator)
– Temporal resolution: 8 days

• Maize mask (USDA)
– Spatial resolution: 30m

• Maize prices (USD/tonne) (1961-2021) (World banks).

• US annual yield (hectograms per hectare) data from 1961 to 2021 (FAOSTAT).
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Study area
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Study area

(a) World maize production, source: USDA,statista (b) US maize production by counties, source:
USDA
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Method
Response variables

The maize prices relatives changes∆pmt from year to year is expressed as follow:

∆pmt =
pmt − pmt−1

pmt−1
(1)

where pmt is the maize prices for them′thmonth of the year t.

The maize yield relatives change∆yieldt from year to year for a specific region is
expressed as follows:

∆yieldt =
yieldt − yieldt−1

yieldt−1
(2)

where yieldt denotes the maize yield for the year t.
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Method

We define a binary variable∆pb
mt equal to one in case of price increase (∆pmt > 0)

and to zero otherwise.

We define a binary variable∆yieldb
t equal to one in case of price increase

(∆yieldt > 0) and to zero otherwise.
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Method

The gridded datasets (remote sensing products, here LAI) at time t and spatial
location/pixel s,with t ∈ [1, T] and s ∈ [1, S],is represented by the matrix X

X =


x11 x12 · · · x1S
x21 x22 · · · x2S
...

...
...

...

xT1 xT2 · · · xTS

 Y =


y1
y2
...

yT

 (3)

S= 123 000, T=38
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Method
Predictors variables
The LAI monthly mean (LAImt) over all pixels in monthm of the year t, the monthly
pixel average can be computed as:

LAImt =
1

S

(
S∑

s=1

LAIsmt

)
(4)

Where S is the number of pixels in the time series,m represents the month and t the
year.
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Method
The space–time decomposition of EOF analysis can be written as follow:

X = AΛUT (5)

X =
M∑

k=1

λkaku
T
k (6)

Formulated as an optimal set of orthonormal spatial functions uk and time expansion
functions, also known as expansion coefficients (EC), ak, where M is the number of
functions (modes), and M = min(T, S).
(R packages wql)
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Method
EOF output examples

(c) EOF 2nd mode: computed from the LAI july time
series

(d) EOF 2nd Principal components:
computed from the LAI july time series

Figure 2: EOF outputs
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Method

Binomial Models

Price predictions:

Pr(∆pb
mt|a1t, .., akt..aMt) = 1 =

eβ0+
∑M

k=1 βkakt

1 + eβ0+
∑M

k=1 βkakt

Yield predictions:

Pr(∆yieldb
mt|a1t, .., akt..aMt) = 1 =

eβ0+
∑M

k=1 βkakt

1 + eβ0+
∑M

k=1 βkakt

LASSO variables selection
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Method

Figure 3: LOOCV method. Source: Cha et al.

LOOCV Algorithm:

• Split the entire data set of size T into:
Orange = year selected in the test data
set
Blue = years selected in the training
data set

• Fit the model using the training data set

• Run the model using the test dataset

• Repeat previous steps T times, and
compute AUC.
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Method
AUC

The Area Under the ROC Curve (AUC) is a measurement of the total area beneath the
entire ROC curve from (0,0) to (1,1).

• AUC ranges from 0 to 1.

• A model with 100% correct
predictions has an AUC of 1.0.

• An AUC of 0.5 is similar to a
random guess.
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Results
Maize prices variation:LAI means
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Results
Products means

Key points:

The averaging method gives:

• Poor overall prediction results

• End-of-year price forecasting is possible using end-of-season products.
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Results
Maize prices variation:GLM LASSO
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Results
Yield variation: Satellite products means
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Results
Yield variation: GLM LASSO
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Discussion
How can such early prediction results be explained?

• Pre-season LAI probably highlight winter/early spring sowing conditions:
– Pre-growing season weather condition impact corn yield[9]
– A late sowing date is associated with a decrease in yield[3, 4, 1]
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Conclusions

• The use of vegetation satellite products allows for early forecasting of annual
increase vs. decrease of maize yields and prices

• EOF better than map average

• EOF probably capture maize sowing conditions in early spring
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Perspectives

• Experiment with different dimension reduction methods (Neural networks:
Variational Auto-encoder):
– EOF is primarily a linear transformation, but auto-encoders can take complex nonlinear

functions into account.

• Applications to other crops and regions:
– Wheat Durum→ Canada is the primary producer, and production is concentrated in a

relatively small and constrained area.
– Soybean→ the USA is one the largest producer(≈ 30%, and it is grown in the same

production area as Maize
– Rice in South→ Eastern Asia
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Thank You
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Method
Performances metrics

ROC curve
An ROC curve (receiver operating characteristic curve) is a graph that depicts the
performance of a classification model across all classification thresholds.
This curve depicts two parameters:

• True Positive Rate

• False Positive Rate

True Positive Rate (TPR) is defined as follows:

TPR =
TP

TP+ FN

False Positive Rate (FPR) is defined as follows:

FPR =
FP

FP+ TN
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