

Trade-offs Related to Methane Emissions at the Territory Scale Driven by Animal Diet Composition

Wang Ruizhen

Supervisors: Accatino Francesco, Pinsard Corentin

CONTEXT

CONTEXT

WHAT DO ANIMALS EAT?

CONTEXT

OBJECTIVES

A. the **feed intake** and **diet composition** for monogastric animals and ruminants

B. animal production (meat, milk, eggs), methane emissions, meat quality, animal welfare and resources management

C. French regional scale

Categories for livestock and feed

	Feed Categories Animal Categories	Cereals	Co- products	Meals	Oil and Protein	Forage	Grass
	Young Cattle						
	Steers (non-castrated)						
Ruminants	Bulls (castrated)						
	Heifers (females)						
	Dairy Cows						
۲	Growing Pigs						
Monogastrics-	Adult Pigs						
	Broilers						
	Laying Hens						

Drivers of the model

Dry matter intake (DMI)

Digestibility (DE)

- Feed item for different animal categories
- Quantity for each feed item
- Gross energy for each feed item

Calculations of Methane Emission

Methodology (calculations for methane emissions)

$$EF = \frac{GE \bullet \left(\frac{Y_m}{100}\right) \bullet 365}{55.65}$$

Where:

EF = emission factor, kg CH4 head-1 yr-1

GE = gross energy intake, MJ head-1 day-1

 Y_m = methane conversion factor, % of gross energy in feed converted to methane (related to DE)

The factor 55.65 (MJ/kg CH4) is the energy content of methane

From: IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change.

Dairy Cows Methane Conversion Factor (Ym)

Feed Quality Digo (DE, %)	estibility	Ym	Methane Yield, g CH₄ / kg DMI
>= 70		5.7	19
63-70		6.3	20.0
<= 62		6.5	21.4

Framework of the quantitative model (e.g. pigs)

Animal Welfare

Grain-fed system:

- directed to fatten up
- ↑ diseases
- ↑ mortality
- ↑ restlessness

Grass-fed system:

- match to animal's natural metabolism
- psychological and physiological stress
- healthier
- † Ability to perform natural behaviors
 - ↑ pregnancy rate
 - regular rest time

More Animal

Welfare

Massif central

Grassland-dominated landscape

Bocage Bourbonnais

Massif central

Extensive cattle rearing (transported to Italy)

Vache Charolais

Feed Categories	Intake Quantity (tons yr-1 head -1)	_	
Cereals	0.215	15.94	0.83
Co-products	0.081	15.90	0.84
Meals	0.096	38.94	0.99
Oil and Protein	0.017	22.28	0.82
Forage	1.690	18.44	0.72
Grass	2.042	18.33	0.75

Data Source: EFESE

Feed Categories Intake Quantity (tons yr-1 head -1)		Average Gross Energy (MJ kg ⁻¹ day ⁻¹)	Average Digestibility (ruminants)	
Cereals	0.215	15.94	0.83	
Co-products	Co-products 0.081		0.84	
Meals	Meals 0.096		0.99	
Oil and Protein	Oil and Protein 0.017		0.82	
Forage	Forage 1.690		0.72	
Grass	Grass 2.042		0.75	

Data Source: EFESE

Simulations of models

Scenarios (tons yr ⁻¹ head ⁻¹)	Cereals	Co- products	Meals	Oil and Protein	Forage	Grass
Baseline	0.215	0.081	0.096	0.017	1.69	2.042
Fattening	+ 0.5	-	-	-	- 0.25	- 0.25
Fattening +	+ 1	-	-	-	- 0.5	- 0.5
Fattening ++	+ 1	-	+ 0.1	-	- 0.5	- 0.6
Grass-fed	- 0.2	-	-	-	+ 0.1	+ 0.1

Scenarios (tons yr ⁻¹ head ⁻¹)	Cereals	Co- products	Meals	Oil and Protein	Forage	Grass
Baseline	0.215	0.081	0.096	0.017	1.69	2.042
Fattening	+ 0.5	-	-	-	- 0.25	- 0.25
Fattening +	+ 1	-	-	-	- 0.5	- 0.5
Fattening ++	+ 1	-	+ 0.1	-	- 0.5	- 0.6
Grass-fed	- 0.2	-	-	-	+ 0.1	+ 0.1

Scenarios (tons yr ⁻¹ head ⁻¹)	Cereals	Co- products	Meals	Oil and Protein	Forage	Grass
Baseline	0.215	0.081	0.096	0.017	1.69	2.042
Fattening	+ 0.5	-	-	-	- 0.25	- 0.25
Fattening +	+ 1	-	-	-	- 0.5	- 0.5
Fattening ++	+ 1	-	+ 0.1	-	- 0.5	- 0.6
Grass-fed	- 0.2	-	-	-	+ 0.1	+ 0.1

Scenarios (tons yr ⁻¹ head ⁻¹)	Cereals	Co- products	Meals	Oil and Protein	Forage	Grass
Baseline	0.215	0.081	0.096	0.017	1.69	2.042
Fattening	+ 0.5	-	-	-	- 0.25	- 0.25
Fattening +	+ 1	-	-	-	- 0.5	- 0.5
Fattening ++	+ 1	-	+ 0.1	-	- 0.5	- 0.6
Grass-fed	- 0.2	-	-	- -	+ 0.1	+ 0.1

Scenarios of Changing Animal Numbers

The biggest difference between ruminants and monogastric animals: **RUMEN**

- transfer human inedible fiber and protein into human edible nutrients
- methane emissions from enteric fermentation

Livestock Unit Scenarios	Ruminant Animals	Monogastric Animals
Baseline	255612	29522
+N of Ruminants/ -N of Monogastrics	+5%	-43%
-N of Ruminants/ +N of Monogastrics	-5%	+43%

CONCLUSION

- Diet composition is a bridge among animal production, impacts on the local land use and methane emission.
- Cereals addition provide a possibility of win-win on increasing animal meat production and reducing methane emission, but with a cost of compromising the animal welfare, and a risk of intensifying foodfeed competition and import needs.
- Changing livestock numbers and ratios could be a lever to optimize the outputs.
- It's of importance on studying methane emission on the regional scale with a multi-criteria approach.

Future Perspectives

- Consolidate the model
- Applied and compare with other regions
- Optimize the diet composition in a multi-criteria approach
- Ameliorate herd dynamics
- Other GHG emissions

•

Thank you!